Quantile Autoregression
نویسندگان
چکیده
We consider quantile autoregression (QAR) models in which the autoregressive coefficients can be expressed as monotone functions of a single, scalar random variable. The models can capture systematic influences of conditioning variables on the location, scale and shape of the conditional distribution of the response, and therefore constitute a significant extension of classical constant coefficient linear time series models in which the effect of conditioning is confined to a location shift. The models may be interpreted as a special case of the general random coefficient autoregression model with strongly dependent coefficients. Statistical properties of the proposed model and associated estimators are studied. The limiting distributions of the autoregression quantile process are derived. Quantile autoregression inference methods are also investigated. Empirical applications of the model to the U.S. unemployment rate and U.S. gasoline prices highlight the potential of the model.
منابع مشابه
Unit Root Quantile Autoregression Inference
We study statistical inference in quantile autoregression models when the largest autoregressive coefficient may be unity. The limiting distribution of a quantile autoregression estimator and its t-statistic is derived. The asymptotic distribution is not the conventional Dickey-Fuller distribution, but a linear combination of the Dickey-Fuller distribution and the standard normal, with the weig...
متن کاملIssues on quantile autoregression ∗
We congratulate Koenker and Xiao on their interesting and important contribution to the quantile autoregression (QAR). The paper provides a comprehensive overview on the QAR model, from probabilistic aspects, to model identification, statistical inferences, and empirical applications. The attempt to integrate the quantile regression and the QAR process is intriguing. It demonstrates surprisingl...
متن کاملQuantile autoregression neural network model with applications to evaluating value at risk
We develop a new quantile autoregression neural network (QARNN) model based on an artificial neural network architecture. The proposed QARNN model is flexible and can be used to explore potential nonlinear relationships among quantiles in time series data. By optimizing an approximate error function and standard gradient based optimization algorithms, QARNN outputs conditional quantile function...
متن کاملCopula-Based Quantile Autoregression
Parametric copulae are shown to be an attractive device for specifying quantile autoregressive models for nonlinear time-series. Estimation of local, quantile-specific models offers some salient advantages over classical global parametric approaches. Consistency and asymptotic normality of the proposed estimators are established, leading to a general framework for inference and model specificat...
متن کاملComment on " Quantile Autoregression " by R . Koenker
My remarks about this paper are organised within four points. The rst of these notes the close connection between the authors random coe¢ cient model and some earlier models that were not formulated in terms of "random coe¢ cients". The second comments on the models identi cation. The third point queries the transition from the authorsbasic model (1) to their quantile version (2). Finally w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004